Home
Class 12
MATHS
If f(x)=int(x^(2))^(x^(2)+1)e^(-t^(2))dt...

If `f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt` , then find the interval in which `f(x)` increases.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(x^(2))^(x^(2)+1)e^(-t^(2))dt , then the interval in which f(x) is increasing, is-

If f(x) = int_(x^2)^(x^2 + 1) e^(-t^2) dt , find the interval in which f(x) is increasing :

If f(x)=int_(x)^(x+1) e^(-t^(2)) dt , then the interval in which f(x) is decreasing is

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=int_(x^2)^(x^2+1)e^(-t^2)dt , then f(x) increases in

If f(x)=int_(x)^(x+1) (e^-(t^2)) dt, then the interval in which f(x) is decreasing is

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is