Home
Class 9
MATHS
Use suitable idntities to find the follo...

Use suitable idntities to find the following products
(i) `(x +5) (x +2)`
(ii) `(x-5) (x-5)`
(iii)` (3x +2) (3x -2)`
(iv)` (x ^(2) + (1)/( x ^(2)) )(x ^(2) - (1)/( x ^(2)))`
(v) `(1+x) (1+x)`

Text Solution

Verified by Experts

The correct Answer is:
(i) `x ^(2) + 7x +10`
(ii) `x ^(2) -10x +25`
(iii) `9x ^(2) -4`
(iv) `x ^(4)- (1)/(x ^(4))`
(v) `1+ 2x +x ^(2)`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • POLYNOMIALS AND FACTORISATION

    NCERT TELUGU|Exercise THINK DISCUSS AND WRITE|4 Videos
  • POLYNOMIALS AND FACTORISATION

    NCERT TELUGU|Exercise DO THESE|22 Videos
  • POLYNOMIALS AND FACTORISATION

    NCERT TELUGU|Exercise EXERCISE 2.4|9 Videos
  • LINES AND ANGLES

    NCERT TELUGU|Exercise THINK, DISCUSS AND WRITE|3 Videos
  • PROBABILITY

    NCERT TELUGU|Exercise EXERCISE 14.1|21 Videos

Similar Questions

Explore conceptually related problems

Use suitable Identities to find the following products. (x+5) (x+2)

Use suitable identities to find the fol lowing products: (x^2+ 1/x^2)(x^2- 1/x^2) .

Find int (2x^(2) -5x +1)/(x^(2)(x^(2) -1))dx.

Find int (2x^(2)-5x+1)/( x^(2)(x^(2)-1)) dx.

Factorise (i) x ^(2) - 2x ^(2) - x +2 (ii) x ^(3) - 3x ^(2) - 9x -5 (iii) x ^(3) + 13 x ^(2) + 32 x + 20 (iv) y ^(3) + y ^(2) -y -1

Write the coefficient of x ^(2) in each of the following br> (i) 15 - 3x + 2x ^(2) (ii) 1- x^(2) (iii) pi x ^(2) - 3x + 5 (iv) sqrt2 x ^(2) + 5x -1

Find the domains of the followings real valued functions: (i) f(x) = (2x^(2)-5x + 7)/((x-1)(x-2)(x-3)) (ii) f(x) = 1/((x^(2)-1)(x+3)) (iii) f(x) =1/(6x-x^(2)-5) , (iv) f(x) = 1/(x+|x|)

Find the value of following monomials, if x = 1: (i) -x , (ii) 4x (iii) -2x^(2)

Write the coefficient of x ^(3) in each of the following (i) x ^(3) + x +1 (ii) 2- x ^(3) + x ^(2) (iii) sqrt2 x ^(3) + 5 (iv) 2x ^(3) +5 (v) pi/2 x ^(3) +x (vi) - 2/3 x ^(3) (vii) 2x ^(2) +5 (viii) 4

Check whether the following equations are quadratic or not . (i) x^(2) - 6x - 4 = 0 (ii) x^(3) - 6x^(2) + 2 x - 1 = 0 (iii) 7x = 2x^(2) (iv) x^(2) + (1)/(x^(2)) = 2 (v) (2x + 1 ) (3 x + 1 ) = 6 (x - 1) (x - 2) (vi) 3y^(2) = 192