Home
Class 10
MATHS
Prove: If logx16 = 2, then x^2 = 16 impl...

Prove: If `log_x16 = 2`, then `x^2 = 16 implies x = +- 4`, Is it correct or not?

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(2)16=…………

If 4, x , 16 are in G.P. then x = ………..

x ^(y) =y ^(x) implies x ( x-y log x ) (dy)/(dx) =

Factorise x^(4) - 16

16 sin x cosx cos 2x cos 4x cos 8x in

If x-2 is a factor of x^(2)+6x+16b , then b =

Prove that : If |x| is so small that x^(4) and higher powers of x may be neglected, then find the approximate value of root(4)(x^(2).+81)-root(4)(x^(2)+16).

If exp { (tan^(2) x -tan^(4) x + tan^(8) x - tan^(6) x …. ) log_(e) 16 } , 0 lt x lt pi // 4 , satisfies the quadratic equation x^(2) - 3x + 2 = 0 , then value of cos^(2) x + cos^(4) x is

If exp{ ( sin^(2) x + sin^(4) x + sin^(6) x + …. "Upto" infty ) log_(e) 2 } satisfies the equation x^(2) - 17x + 16 = 0 then the value of (2 cos x )/(sin x +2 cos x ) (0 lt x lt pi//2) is

If p : x^(2) - 16 = 0, q : (x + 4)(x-4) = 0 , then p harr q