Home
Class 11
MATHS
Find (a +b)^4 - (a - b)^4. Hence, evalua...

Find `(a +b)^4` - `(a - b)^4`. Hence, evaluate `(sqrt3 + sqrt2)^4` - `(sqrt3 - sqrt2)^4`.

Text Solution

Verified by Experts

The correct Answer is:
8(`a^3`b + `ab^3`); 40 `sqrt6`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    NCERT TELUGU|Exercise EXERCISE 8.2|10 Videos
  • BINOMIAL THEOREM

    NCERT TELUGU|Exercise Miscellanous exercise on chapter 8|10 Videos
  • BINOMIAL THEOREM

    NCERT TELUGU|Exercise Miscellanous exercise on chapter 8|10 Videos
  • APPENDIX 2 MATHEMATICAL MODELLING

    NCERT TELUGU|Exercise EXAMPLE|3 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT TELUGU|Exercise MISCELLANEOUS EXERCISES ON CHAPTER 24|1 Videos

Similar Questions

Explore conceptually related problems

(sqrt3+sqrt2)(sqrt3-sqrt2) =

Simplify: (sqrt3-sqrt2) /(sqrt3+sqrt2)

Find (x + 1)^6 + (x-1)^6 . Hence or otherwise evaluate (sqrt2 + 1)^6 + (sqrt2 - 1)^6 .

Simplify the following (sqrt(3)+sqrt(2))^(4)-(sqrt(3)-sqrt(2))^(4)

The values of (sqrt3+i)^(1//4) are

If 'a' and 'b' are rational numbers, find the value of a and b in each of the following equations. (sqrt3+sqrt2)/(sqrt3-sqrt2)=a+bsqrt6

sqrt(-3-4i)=

Find all the values of (sqrt3 + i) ^(1/4) .