Home
Class 11
MATHS
For x=(pi)/(12), the value of the expres...

For `x=(pi)/(12)`, the value of the expression `(tan^(4)x+2tan^(2)x+1)cos^(2)x` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

the value of lim_(x rarr0)(x tan2x-2x tan x)/((1-cos2x)^(2)) is equal to

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

The expression (tan^(4)x+2tan^(2)x+1)cos^(2)x, whenx =(pi)/(12) can be equal to (a)4(2-sqrt(3)) (b) 4(sqrt(2)+1) (c)16(cos^(2)pi)/(12) (d) 16(sin^(2)pi)/(12)

If tan x-tan^(2)x=1, then the value of tan^(4)x-2tan^(3)x-tan^(2)x+2tan x+k=4, then k is equal to

The expression tan.(pi/4+1/2cos^(-1)x)+tan(pi/4-1/2cos^(-1)x) equals

tan^(-1)2x+tan^(-1)3x=(pi)/(4)

If tan^(-1)4+cot^(-1)x=(pi)/(2), then value of x is

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is