Home
Class 12
MATHS
If f(t)=(1-t)/(1+t) then the value of f'...

If `f(t)=(1-t)/(1+t)` then the value of f'(1/t) is

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(x)f(t)dt=x+int_(x)^(1)f(t)dt ,then the value of f(1) is

If int_(0)^(x) f(t)dt=x+int_(x)^(1) t f(t) dt , then the value of f(1), is

f(x)=int_(0)^( pi)f(t)dt=x+int_(x)^(1)tf(t)dt, then the value of f(1) is (1)/(2)

If int_(0) ^(x) f (t) dt = x + int _(x ) ^(1) t f (t) dt, then the value of f (1) , is

If f(x)=x+int_(0)^(1)t(x+t)f(t)dt, then the value of (23)/(2)f(0) is equal to

If lim_(t rarr x)(e^(t)f(x)-e^(x)f(t))/((t-x)(f(x))^(2))=2 and f(0)=(1)/(2), then find the value of f'(0)*4(b)2(c)0(d)1

If (1+sin t)(1+cos t)=(5)/(4) then find the value of (1-sin t)(1-cos t)

Let function f:R rarr R satisfying the equation f(x)=(1+x^(2))(1+int_(0)^(x)(f^(2)(t))/(1+t^(2))dt) ,then absolute value of f(1)