Home
Class 12
MATHS
Show that (i) sin^(-1)(2xsqrt(1-x^(2))...

Show that
(i) `sin^(-1)(2xsqrt(1-x^(2)))=2sin^(-1)x,-1/(sqrt(2))lexle1/(sqrt(2))`
(ii) `sin^(-1)(2xsqrt(1-x^(2)))=2cos^(-1)x,1/(sqrt(2))lexle1`

Text Solution

Verified by Experts

The correct Answer is:
(i) `2sin^(-1)x` (ii) `2cos^(-1)x`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT TELUGU|Exercise EXERCISE 7.12|43 Videos
  • LINEAR PROGRAMMING

    NCERT TELUGU|Exercise EXERCISE 12.1 (SOLVE THE FOLLOWING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY:)|6 Videos

Similar Questions

Explore conceptually related problems

int (Sin^(-1) x)/(sqrt(1-x^(2)))dx=

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=

int (x+Sin^(-1)x)/(sqrt(1-x^(2)))=dx

sin h^(-1) ((x)/(sqrt(1 - x^(2)))) =

cos[2Sin^(-1)sqrt((1-x)/2)]=

cos[2sin^(-1)sqrt((1-x)/2)]=

Sin^(-1)(xsqrt(1-y^(2))+ysqrt(1-x^(2)))=

int_(-1)^(1)(sin^(-1)""(x)/(sqrt(1-x^(2)))+Cos^(-1)(x)/(sqrt(1-x^(2))))dx=

Show that int_(0)^(1//2)(x sin^(-1)x)/(sqrt(1-x^(2)))dx = (1)/(2)-(sqrt(3))/(12)pi