Home
Class 12
MATHS
Sovle tan^(-1)2x+tan^(-1)3x=(pi)/4...

Sovle `tan^(-1)2x+tan^(-1)3x=(pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
`x=1/6`
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 2.1|14 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT TELUGU|Exercise EXERCISE 7.12|43 Videos
  • LINEAR PROGRAMMING

    NCERT TELUGU|Exercise EXERCISE 12.1 (SOLVE THE FOLLOWING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY:)|6 Videos

Similar Questions

Explore conceptually related problems

Assertion (A) : The value of "tan"^(-1)+"tan"^(-1)3=(3pi)/(4) Reason (R) : If x gt 0, y gt , 0, xy gt 1 then tan^(-1)x+tan^(-1)y=pi +tan^(-1)((x+y)/(1-xy))

If Tan^(-1)2x+Tan^(-1)3x=pi//4 , then x =

If x_(1),x_(2),x_(3) are the real roots of the equation x^(3)-x^(2)tantheta+xtan^(2)theta+tantheta=0and0ltthetalt(pi)/(4) then the value of tan^(-1)x_(1)+tan^(-1)x_(2)+tan^(-1)x_(3)" at "theta=(pi)/(12) is

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))

The value of tan^(-1)(tan((3pi)/4))=

Let |{:(tan^(-1)x, tan^(-1)2x, tan^(-1)3x), (tan^(-1)3x, tan^(-1)x, tan^(-1)2x), (tan^(-1)2x, tan^(-1)3x, tan^(-1)x):}|=0 , then the number of values of x satisfying the equation is

If tan^(-1)(a//x)+tan^(-1)(b//x)=pi//2 then x=

2gt0,3gt0 and 2,3gt1impliestan^(-1)(2)+tan^(-1)(3) =pi+tan^(-1)((2+3)/(1-2.3)) =pi+tan^(-1)(-1)=pi-(pi)/4=(3pi)/4

If Tan^(-1)(1+x)+Tan^(-1)(1-x)=pi//4 then x =