Home
Class 12
MATHS
Prove That : tan^(-1)sqrt(x)=1/2"cos"...

Prove That :
`tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT TELUGU|Exercise EXERCISE 7.12|43 Videos
  • LINEAR PROGRAMMING

    NCERT TELUGU|Exercise EXERCISE 12.1 (SOLVE THE FOLLOWING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY:)|6 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

Prove the following : 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x epsilon[1/2,1]

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x =1/(sqrt(2))ltxle1

Prove the following : 3sin^(-1)x=sin^(-1)(3x-4x^(3)),x epsilon[-1/2, 1/2]

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

Prove that sin[Cot^(-1) (2x)/(1-x^2)+Cos^(-1)((1-x^(2))/(1+x^(2)))]=1 .

If x in (-1,1) prove that 2Tan^(-1)x="Tan"^(-1)(2x)/(1-x^(2))

If tan^(-1)(sqrt(1+x^(2))-1)/x=4^(0) , then

If "tan"^(-1)(sqrt(1+x^(2))-1)/x=4^(@) then