Home
Class 12
MATHS
Prove That : tan^(-1)((sqrt(1+x)-sqrt...

Prove That :
`tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x =1/(sqrt(2))ltxle1`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT TELUGU|Exercise EXERCISE 7.12|43 Videos
  • LINEAR PROGRAMMING

    NCERT TELUGU|Exercise EXERCISE 12.1 (SOLVE THE FOLLOWING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY:)|6 Videos

Similar Questions

Explore conceptually related problems

d/(dx){Cot^(-1)""(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}

Show that : Lt_(x to 0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1+x^(2))-sqrt(1-x))=1

Find Lt_(xto0)(sqrt(1+x)-sqrt(1+x^(2)))/(sqrt(1-x^(2))-sqrt(1-x))

tan^(-1)(x+sqrt(1+x^(2)))=

Lt_(x to-1) ((sqrt(pi))-sqrt(cos^(-1)x))/(sqrt(x+1))=

If (sqrt(1 +x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))=3 then x=

underset(x to 0)"Lt" (sqrt(1-x)-sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1+x))=

(d)/(dx) Tan^(-1)[(sqrt(1+sinx) - sqrt(1-sin x))/(sqrt(1+sin x) + sqrt(1-sin x))]=