Home
Class 12
MATHS
Prove That : (9pi)/4-9/8"sin"^(-1)1/3...

Prove That :
`(9pi)/4-9/8"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt(2))/3`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT TELUGU|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT TELUGU|Exercise EXERCISE 7.12|43 Videos
  • LINEAR PROGRAMMING

    NCERT TELUGU|Exercise EXERCISE 12.1 (SOLVE THE FOLLOWING LINEAR PROGRAMMING PROBLEMS GRAPHICALLY:)|6 Videos

Similar Questions

Explore conceptually related problems

sin ^(-1) (sqrt(3))/(2) + sin ^(-1) sqrt(2/3)=

cos^(-1)((-3)/4)=pi-sin^(-1)sqrt(1-9/16)=pi-sin^(-1)((sqrt(7))/4)

sin^(-1)(-3/4)=-cos^(-1)sqrt(1-9/16)=-cos^(-1)((sqrt(7))/4)

The value of sin[(pi)/2-sin^(-1)(-(sqrt(3))/2)]=

Prove that sin ^(2) ((pi)/(8)+(A)/(2)) - sin ^(2) ((pi)/(8) - (A)/(2))=(1)/(sqrt2) sin A .

Prove that Sin^-1""4/5+Sin^-1""5/13+Sin^-1(16/65)=pi/2