Home
Class 12
MATHS
By using properties of determinants , s...

By using properties of determinants , show that : (i) ` {:[( x+4, 2x, 2x),( 2x,x+4, 2x),( 2x,2x, x+4) ]:}=( 5x +4) (4-x)^(2) `
( ii) ` {:[( y+k , y , y ),( y,y+ k , y ),( y,y , y+k ) ]:} =k^(2) ( 3y +k ) `

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT TELUGU|Exercise EXERCISE 4.3|7 Videos
  • DETERMINANTS

    NCERT TELUGU|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT TELUGU|Exercise EXERCISE 4.1|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT TELUGU|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|22 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TELUGU|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

If 2x + y + k - 0 is a focal chord of y^(2) + 4x = 0 then k =

If the circles x^(2) + y^(2) - 6x - 8y + 12 = 0 , x^(2) + y^(2) - 4x + 6y + k = 0 cut orthogonally, then k =

Locus of the image of the point (2,3) in the line (2x-3y+4)+k(x-2y+3)=0 , k in R, is a

If x^(2) + y^(2) - 2x + 3y + k = 0 " and " x^(2) + y^(2) + 8x - 6y = 7 = 0 cut each other orthogonally , the value of k must be

if x and y satisfy 3x + 2y = 11 and 2x + 3y = 4 then y=….

Find the value of k, if the circles x^(2) + y^(2) + 4x + 8 = 0 and x^(2) + y^(2) - 16y + k = 0 are orthogonal.

If 3x - 4y + k = 0 is a tangent to x^(2) - 4y^(2) = 5 find the value of k.

Find k if the following pairs of circles are orthogonal. x^2 + y^2 - 6x - 8y + 12 = 0 , x^2 + y^2 - 4x + 6y + k = 0

If the length of the tangent from (2,5) to the circle x^(2) + y^(2) - 5x +4y + k = 0 is sqrt(37) then find k.