Home
Class 12
MATHS
Without expanding the determinant, prove...

Without expanding the determinant, prove that ` {:[( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) ]:} ={:[( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) ]:} `

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT TELUGU|Exercise EXERCISE 4.6|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT TELUGU|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|22 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TELUGU|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that (i) |{:(a,a^(2),bc),(b,b^(2),ca),(c,c^(2),ab):}|=|{:(1,a^(2),a^(3)),(1,b^(2),b^(3)),(1,c^(2),c^(3)):}| (ii) |{:(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1):}|=|{:(a,b,c),(x,y,z),(yz,zx,xy):}| (iii) |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|

Without expanding the determinant , prove that |{:(a,a^2,bc),(b,b^2,ca),(c,c^2,ab):}|=|{:(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3):}|

|(1//a,a^(2),bc),(1//b,b^(2),ca),(1//c,c^(2),ab)|=

Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) ]:} =4a^(2) b^(2) c^(2)

Without expanding the determinant, prove that |{:(1,bc,b+c),(1,ca,c+a),(1,ab,a+b):}|=|{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|

|(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ac,bc,c^(2)+1)|=

If a,b,c are different and |(a,a^(2),a^(3)-1),(b,b^(2),b^(3)-1),(c,c^(2),c^(3)-1)|=0 then

Without expanding the determinant show that |(b+c,c+a,a+b),(c+a,a+b,b+c),(a+b,b+c,c+a)|=2|(a,b,c),(b,c,a),(c,a,b)|

Show that |{:(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab):}|=0

NCERT TELUGU-DETERMINANTS -Miscellaneous Exercises on Chapter 4
  1. Prove that the determinant {:[( x, sin theta ,cos theta ),( -sin thet...

    Text Solution

    |

  2. Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( ...

    Text Solution

    |

  3. Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),...

    Text Solution

    |

  4. If a,b and c are real numbers, and Delta ={:[( b+c,C+a,a+b),( c+a,a...

    Text Solution

    |

  5. Solve the equation {:[( x+a,x,x),(x,x+a,x),(x,x,x+a) ]:}=0,ane 0

    Text Solution

    |

  6. Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2...

    Text Solution

    |

  7. If A^(-1) ={:[( 3,-1,1),(-15,6,-5),(5,-2,2) ]:}and B= {:[( 1,2,-2),( -...

    Text Solution

    |

  8. Evaluate {:[( x,y , x+y),( y,x+y,x),( x+y,x,y)]:}

    Text Solution

    |

  9. Evaluate {:[(1,x,y),( 1,x+y,y),( 1,x,x+y)]:}

    Text Solution

    |

  10. Using properties of determinants in Exercises prove that : {:[( alph...

    Text Solution

    |

  11. {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(3)),( z,z^(2) , 1+pz^(3)...

    Text Solution

    |

  12. Prove {:[( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) ]:} = 3( a+...

    Text Solution

    |

  13. {:[( 1,1+p,1+p+q),( 2,3+2p,1+3p+2q),( 3,6+3p,1+6p+3q)]:}=1

    Text Solution

    |

  14. Prove that {:[( sin alpha , cos alpha ,cos (alpha +delta) ),( sinbeta,...

    Text Solution

    |

  15. If a,b,c are in A.P. then the determinant {:[( x+2,x+3,x+2a),( x+3,...

    Text Solution

    |

  16. If x,y,z are nonzero real number , then the inverse of matrix A= {:[( ...

    Text Solution

    |

  17. Let A={:[( 1,sin theta , 1),( -sin theta , 1, sin theta ),( -1 ,-sin ...

    Text Solution

    |