Home
Class 12
MATHS
Using properties of determinants in Exer...

Using properties of determinants in Exercises prove that :
`{:[( alpha , alpha ^(2) , beta +gamma ),( beta , beta ^(2) , gamma +alpha ),( gamma , gamma ^(2) ,alpha +beta ) ]:} =(beta -gamma ) (gamma -alpha ) (alpha -beta ) (alpha +beta +gamma ) `

Text Solution

Verified by Experts

The correct Answer is:
`x=2,y=3,z=5`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT TELUGU|Exercise EXERCISE 4.6|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT TELUGU|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|22 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TELUGU|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

cos alpha * sin (beta - gamma ) + cos beta * sin ( gamma - alpha ) + cos gamma * sin ( alpha - beta )=

Without expanding the determinant, prove that: (i) |{:(alpha, alpha^(2), beta gamma),(beta, beta^(2), gamma alpha),(gamma, gamma^(2), alpha beta):}| =|{:(1,alpha^(2), alpha^(3)),(1, beta^(2), beta^(3)),(1, gamma^(2), gamma^(3)):}|

cos (alpha + beta + gamma ) + cos (alpha - beta - gamma) + cos ( beta - gamma - alpha ) + cos ( gamma - alpha - beta )=

If alpha + beta + gamma = 2pi , then

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

cos alpha + cos beta + cos gamma + cos ( alpha + beta + gamma ) =

If alpha , beta , gamma are the roots of the equation x^3 +px^2 + qx +r=0 prove that ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =r-pq

NCERT TELUGU-DETERMINANTS -Miscellaneous Exercises on Chapter 4
  1. Prove that the determinant {:[( x, sin theta ,cos theta ),( -sin thet...

    Text Solution

    |

  2. Without expanding the determinant, prove that {:[( a, a ^(2), bc ),( ...

    Text Solution

    |

  3. Evaluate {:[( cos alpha cos beta , cos alpha sin beta , -sin alpha ),...

    Text Solution

    |

  4. If a,b and c are real numbers, and Delta ={:[( b+c,C+a,a+b),( c+a,a...

    Text Solution

    |

  5. Solve the equation {:[( x+a,x,x),(x,x+a,x),(x,x,x+a) ]:}=0,ane 0

    Text Solution

    |

  6. Prove that {:[( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2...

    Text Solution

    |

  7. If A^(-1) ={:[( 3,-1,1),(-15,6,-5),(5,-2,2) ]:}and B= {:[( 1,2,-2),( -...

    Text Solution

    |

  8. Evaluate {:[( x,y , x+y),( y,x+y,x),( x+y,x,y)]:}

    Text Solution

    |

  9. Evaluate {:[(1,x,y),( 1,x+y,y),( 1,x,x+y)]:}

    Text Solution

    |

  10. Using properties of determinants in Exercises prove that : {:[( alph...

    Text Solution

    |

  11. {:[( x,x^(2) , 1+ px^(3) ),( y,y^(2) , 1+ py^(3)),( z,z^(2) , 1+pz^(3)...

    Text Solution

    |

  12. Prove {:[( 3a,-a+b,-a+c),( -b+a, 3b,-b+c) ,( -c+a,-c+b,3c) ]:} = 3( a+...

    Text Solution

    |

  13. {:[( 1,1+p,1+p+q),( 2,3+2p,1+3p+2q),( 3,6+3p,1+6p+3q)]:}=1

    Text Solution

    |

  14. Prove that {:[( sin alpha , cos alpha ,cos (alpha +delta) ),( sinbeta,...

    Text Solution

    |

  15. If a,b,c are in A.P. then the determinant {:[( x+2,x+3,x+2a),( x+3,...

    Text Solution

    |

  16. If x,y,z are nonzero real number , then the inverse of matrix A= {:[( ...

    Text Solution

    |

  17. Let A={:[( 1,sin theta , 1),( -sin theta , 1, sin theta ),( -1 ,-sin ...

    Text Solution

    |