Home
Class 12
MATHS
y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(...

`y = sqrt(1 + x^(2)) : y' = (xy)/(1 + x^(2))`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT TELUGU|Exercise EXERCISE - 9.3|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TELUGU|Exercise EXERCISE - 9.4|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT TELUGU|Exercise EXERCISE - 9.1|12 Videos
  • DETERMINANTS

    NCERT TELUGU|Exercise Miscellaneous Exercises on Chapter 4|17 Videos
  • INTEGRALS

    NCERT TELUGU|Exercise EXERCISE 7.12|43 Videos

Similar Questions

Explore conceptually related problems

The general solution of x sqrt(1 + y^(2)) dx + y sqrt(1 + x^(2)) dy = 0 is

The solution of x sqrt(1 - y^(2)) dx + y sqrt(1 - x^(2)) dy = 0 is

If y sqrt(1+ x ^(2)) = log ( x + sqrt( 1 + x ^(2))) then (1 + x ^(2)) y_(1) + xy=

If sqrt(1+ x ^(2)) + sqrt(1 + y ^(2)) =a ( x -y) then (dy)/(dx) =

If y = x log |x + sqrt(1 + x ^(2)) |- sqrt(1 + x ^(2)) then (dy )/(dx )=

If sqrt(1- x ^(2)) + sqrt(1- y ^(2) ) = a (x -y) then (dy)/(dx)=

A : If y = sqrt( sinx + y ) then (dy)/(dx) = (cos x )/( 2y -1) R: If y = sqrt(f(x) + y) then (dy)/(dx) = (f'(x))/(2y -1).

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .