Home
Class 9
MATHS
Find the product (2a + b+c) (4a ^(2) +...

Find the product
`(2a + b+c) (4a ^(2) + b ^(2) + c ^(2) - 2ab -bc -2ca)`

Text Solution

Verified by Experts

The correct Answer is:
`=8a ^(3) + b ^(3) + c ^(3) - 6abc`
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS AND FACTORISATION

    NCERT BANGLISH|Exercise EXERCISE 2.1|6 Videos
  • POLYNOMIALS AND FACTORISATION

    NCERT BANGLISH|Exercise EXERCISE 2.2|6 Videos
  • LINES AND ANGLES

    NCERT BANGLISH|Exercise THINK, DISCUSS AND WRITE|3 Videos
  • PROBABILITY

    NCERT BANGLISH|Exercise DO THIS|3 Videos

Similar Questions

Explore conceptually related problems

Find the proudct (a-b-c) (a ^(2) + b ^(2) + c ^(2) - ab + bc-ca) without actual multiplication.

Factorise : 3a^(2)-b^(2)-c^(2)+2ab-2bc+2ca

If a/b = b/c = c/d , then prove that (a^(2) + b^(2) + c^(2))(b^(2) + c^(2)+d^(2)) = (ab + bc cd)^(2)

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

(v) 2(bc cosA + ca cosB + ab cosC) = a^(2) +b^(2)+c^(2)

If three numbers a, b, c satisfy the relation (a^(2) + b^(2)) (b^(2) + c^(2)) = (ab + bc)^(2) , show that, a, b, c are in G.P.

Fractorise 4a ^(2) + b ^(2) + c ^(2) -4ab + 2bc-4ca using suitable identity.

If a, b and c are three positive real numbers, show that a^2 + b^2 + c^2 ge ab + bc + ca

If a, b, c are in geometric progression, then show that, (a^(2) + ab + b^(2))/(ab + bc + ca) = (a + b)/(b + c)

If a = 1 , b = 2 , c = 3 , then find then value of (2a^(2)+2b^(2)+2c^(2)-ab-bc-ca)/(a^(3)+b^(3)+c^(3)-3abc)