Home
Class 11
MATHS
For all n ge 1 prove that (1)/(1.2)+ ...

For all `n ge 1` prove that
`(1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/(n(n+1))=(n)/(n+1)`

Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT BANGLISH|Exercise EXERCISE - 4.1|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT BANGLISH|Exercise Miscellaneous Exercise on Chapter 7|11 Videos
  • PROBABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISEON CHAPTER 25|1 Videos

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.2.3)+ (1)/(2.3.4)+ (1)/(3.4.5)+....+ (1)/(n(n+1)(n+2))= (n(n+3))/(4(n+1)(n+2))

For all ninNN , prove by principle of mathematical induction that, (1)/(1*2)+(1)/(2*3)+(1)/(3*4)+ . . .+(1)/(n(n+1))=(n)/(n+1) .

Prove that by using the principle of mathematical induction for all n in N : (1)/(1.4)+ (1)/(4.7)+(1)/(7.10)+...+ (1)/((3n-2)(3n+1))= (n)/(3n+1)

Prove that by using the principle of mathematical induction for all n in N : (1)/(3.5)+ (1)/(5.7)+ (1)/(7.9)+ ....+(1)/((2n+1)(2n+3))= (n)/(3(2n+3))

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove that by using the principle of mathematical induction for all n in N : (1)/(2)+ (1)/(4)+ (1)/(8)+ ......+ (1)/(2^(n))= 1-(1)/(2^(n))

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

Prove that by using the principle of mathematical induction for all n in N : 1+ (1)/((1+2))+ (1)/((1+2+3))+ .....+(1)/((1+2+3+n))= (2n)/(n+1)

Prove by induction that (1)/(1*3)+(1)/(3*5)+(1)/(5*7)+ . . .+(1)/((2n-1)(2n+1))=(n)/(2n+1)(ninNN) .

Using the principle of mathematical induction prove that 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)++1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2) for all n in N

NCERT BANGLISH-PRINCIPLE OF MATHEMATICAL INDUCTION-EXERCISE - 4.1
  1. For all n ge 1 prove that (1)/(1.2)+ (1)/(2.3)+(1)/(3.4)+.....+(1)/...

    Text Solution

    |

  2. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  3. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  4. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  5. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  6. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  7. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  8. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  9. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  10. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  11. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  12. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  13. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  14. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  15. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  16. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  17. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  18. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  19. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  20. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  21. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |