Home
Class 11
MATHS
Prove that by using the principle of ma...

Prove that by using the principle of mathematical induction for all `n in N`:
`n(n+1)(n+5)` is a multiple of 3

Promotional Banner

Topper's Solved these Questions

  • PRINCIPLE OF MATHEMATICAL INDUCTION

    NCERT BANGLISH|Exercise EXERCISE - 4.1|24 Videos
  • PERMUTATIONS AND COMBINATIONS

    NCERT BANGLISH|Exercise Miscellaneous Exercise on Chapter 7|11 Videos
  • PROBABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISEON CHAPTER 25|1 Videos

Similar Questions

Explore conceptually related problems

Prove that by using the principle of mathematical induction for all n in N : 41^(n)-14^(n) is multiple of 27

Prove that by using the principle of mathematical induction for all n in N : (2n+7) lt (n+3)^(2)

Using principle of mathematical induction, prove that for all n in N, n(n+1)(n+5) is a multiple of 3.

Prove that by using the principle of mathematical induction for all n in N : x^(2n)-y^(2n) is divisible by x+y

Prove that by using the principle of mathematical induction for all n in N : 3^(2n+2)-8n-9 is divisible by 8

Prove the following by using the principle of mathematical induction for all n in N : (2n+7)<(n+3)^2 .

Prove that by using the principle of mathematical induction for all n in N : 10^(2n-1)+1 is divisible by 11

Prove that by using the principle of mathematical induction for all n in N : (1)/(2.5)+ (1)/(5.8) + (1)/(8.11)+ ...+(1)/((3n-1)(3n+2))= (n)/(6n+4)

Prove that by using the principle of mathematical induction for all n in N : 1+2+3+.....+n lt (1)/(8)(2n+1)^(2)

Prove that by using the principle of mathematical induction for all n in N : 1.2.3+ 2.3.4+ ....+ n(n+1)(n+2)=(n(n+1)(n+2)(n+3))/(4)

NCERT BANGLISH-PRINCIPLE OF MATHEMATICAL INDUCTION-EXERCISE - 4.1
  1. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  2. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  3. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  4. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  5. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  6. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  7. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  8. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  9. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  10. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  11. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  12. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  13. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  14. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  15. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  16. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  17. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  18. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  19. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |

  20. Prove that by using the principle of mathematical induction for all n...

    Text Solution

    |