Home
Class 12
MATHS
Prove That : tan^(-1)sqrt(x)=1/2"cos"...

Prove That :
`tan^(-1)sqrt(x)=1/2"cos"^(-1)(1-x)/(1+x),x epsilon[0,1]`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT BANGLISH|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT BANGLISH|Exercise EXERCISE 7.12|44 Videos
  • LINEAR PROGRAMMING

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

tan ^(-1) ""sqrt(x) =(1)/(2) cos^(-1) ""(1-x)/(1+x) , 0 le x le 1

Prove that , 2tan^(-1)x= cos^(-1) (1-x^2)/(1+x^2) .

Prove the following : 3cos^(-1)x=cos^(-1)(4x^(3)-3x),x epsilon[1/2,1]

Prove that tan^(-1){x/(a+sqrt(a^2-x^2))}=1/2sin^(-1)(x/a) ,-a lt x lt a

Prove that sin^(-1)((2x)/(1+x^2))=tan^(-1)((2x)/(1-x^2))

Prove that: lim_(x to 0)(sqrt(1+x)-1)/(log(1+x))=(1)/(2)

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

Prove the following : 3sin^(-1)x=sin^(-1)(3x-4x^(3)),x epsilon[-1/2, 1/2]

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0 < x < 1

Prove that cos^(-1) {sqrt((1 + x)/(2))} = (cos^(-1) x)/(2) , -1 lt x lt 1