Home
Class 12
MATHS
Prove That : cot^(-1)((sqrt(1+sinx)+s...

Prove That :
`cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x epsilon(0,(pi)/4)`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT BANGLISH|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT BANGLISH|Exercise EXERCISE 7.12|44 Videos
  • LINEAR PROGRAMMING

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

Prove that: cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2,x in (0,pi/4)

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

int_0^(pi/2)(sqrt(sinx))/(sqrt(sinx)+sqrt(cosx)) dx

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , (0 lt x lt pi/2) , then (dy)/(dx)=

Prove That : tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=(pi)/4-1/2cos^(-1)x,-1/(sqrt(2))ltxle1

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0 < x < 1

int_(0)^((pi)/(2))(sqrt(sinx)dx)/(sqrt(sinx)+sqrtcosx)

int_(0)^(pi)sqrt(1+sinx)dx

If pi < x < 2pi, prove that (sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))="cot(x/2+pi/4)dot

Solve (sqrt(5)-1)/(sinx)+(sqrt(10+2sqrt(5)))/(cosx)=8,x in (0,pi/2)