Home
Class 12
MATHS
Prove That : (9pi)/8-9/4"sin"^(-1)1/3...

Prove That :
`(9pi)/8-9/4"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt(2))/3`

Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT BANGLISH|Exercise EXERCISE 2.2|21 Videos
  • INTEGRALS

    NCERT BANGLISH|Exercise EXERCISE 7.12|44 Videos
  • LINEAR PROGRAMMING

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|8 Videos

Similar Questions

Explore conceptually related problems

sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

Prove that : "sin"(pi)/(3) "tan"(pi)/(6) +"sin"(pi)/(2) "cos"(pi)/(3) =2 "sin"^(2)(pi)/(4) .

Prove that sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt2sinA

Prove that sin (pi/14)sin((3pi)/14)sin((5pi)/14)=1/8

prove that "sin"^4pi/8+"sin"^4(3pi)/8+"sin"^4(5pi)/8+"sin"^4 (7pi)/8=3/2

Prove that 8"cos"^3pi/9-6"cos"pi/9=1

Prove that, int_((pi)/(4))^((3pi)/(4))(phidphi)/(1+sinphi)=(sqrt(2)-1)pi

Prove that : 4 sin 50^(@)- sqrt(3) tan 50^(@)=1

Prove that, cos^(2) (pi/4) + sin^(2) (3pi/4) + sin^(2) (5pi/4) + sin^(2)(7pi/4) = 2 .

Prove that: sin^2(pi/(18))+sin^2(pi/9)+sin^2((7pi)/(18))+sin^2((4pi)/9)=2