Home
Class 12
MATHS
if A={:[(1,1,1),(1,1,1),(1,1,1)]:}, pro...

if `A={:[(1,1,1),(1,1,1),(1,1,1)]:},` prove by mathematical induction that,
`A^(n)={:[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))]:}` for every positive integer n.

Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NCERT BANGLISH|Exercise EXERCISE 3.4|18 Videos
  • LINEAR PROGRAMMING

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|8 Videos
  • PROBABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 13|19 Videos

Similar Questions

Explore conceptually related problems

If A={:[(1,1,1),(0,1,1),(0,0,1)] , Prove by mathematical induction that, A^(n)={:[(1,n,(n(n+1))/2),(0,1,n),(0,0,1)] for every positive integer n.

Prove by mathematical induction that, 1^(2)-2^(2)+3^(2)-4^(2)+ . . .. +(-1)^(n-1)*n^(2)=(-1)^(n-1)*(n(n+1))/(2),ninNN .

If A={:[(a,b),(0,1)]:}, prove by mathematical induction that, A^(n)= [{:(,a^(n), (b(a^(n) -1))/(a-1)),(,0,1)]:} for every positive integer n.

Prove by mathematical induction 1^(2)+2^(2)+3^(2)+.....+(n+1)^(2)=((n+1)(n+2)(n+3))/(6)

Prove by mathematical induction that 1/1.3+1/3.5+1/5.7+...+1/((2n-1)(2n+1)) = n/(2n+1),(n in N)

Prove by. mathematical induction : 1.2+2.2^2+3.2^3+...+n.2^n=(n-1)2^(n+1)+2,n in N

Prove by mathematical induction, n.1+(n-1).2+(n-2).3+…+2.(n-1)+1.n = (n(n+1)(n+2))/6 where n in N .

If A={:[(3,-4),(1,-1)]:}, then by principle of mathematics induction show that, A^(n)={:[(1+2n,-4n),(n,1-2n)]:} for all n in N.

Prove be mathematical induction : (1)/(3.6)+(1)/(6.9)+(1)/(9.12)+...+(1)/(3n(3n+3))=(n)/(9(n+1))

Prove by mathematical induction. 1/1.3+1/3.5+1/5.7+....+1/((2n-1)(2n+1))=n/(2n+1)