Home
Class 12
MATHS
If A=[(alpha, beta),(gamma, -alpha)] is ...

If `A=[(alpha, beta),(gamma, -alpha)]` is such that `A^(2)=I`, then

A

`I+alpha^(2)+beta gamma=0`

B

`I-alpha^(2)+beta gamma=0`

C

`I-alpha^(2)-beta gamma=0`

D

`I+alpha^(2)-beta gamma=0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    NCERT BANGLISH|Exercise EXERCISE 3.4|18 Videos
  • LINEAR PROGRAMMING

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|8 Videos
  • PROBABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 13|19 Videos

Similar Questions

Explore conceptually related problems

If [[alpha, beta], [gamma, -alpha]] is to be square root of two-rowed unit matrix, then alpha,beta and gamma should satisfy the relation. a. 1-alpha^2+betagamma=0 b. alpha^2+betagamma=0 c. 1+alpha^2+betagamma=0 d. 1-alpha^2-betagamma=0

If alpha,beta,gamma are the roots of the equation x^3-p x+q=0, then find the cubic equation whose roots are alpha/(1+alpha),beta/(1+beta),gamma/(1+gamma) .

If alpha,beta,gamma are the roots of the equation x^3+x+1=0 , then the value of alpha^3+beta^3+gamma^3 is.

If alpha,beta,gamma are the roots of he euation x^3+4x+1=0, then find the value of (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1) .

If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then prove that tan alpha=tan beta+2 tan gamma .

If alpha, beta and gamma are angle such that tan alpha + tan beta+tan gamma= tan alpha tan beta tan gammaand x=cos alpha + I sin alpha, y=cos beta+ I sin beta and z= cos gamma+ I sin gamma, then the value of xyz is -

If alpha,beta,gamma are such that alpha+beta+gamma =4, alpha^2+beta^2+gamma^2 =6, alpha^3+beta^3+gamma^3 =8, then the value of [alpha^4+beta^4+gamma^4] must be equal to (where[.] denotes the greatest integer function)

If alpha,beta,gamma are in A.P. show that cot beta=(sin alpha-sin gamma)/(cos gamma-cos alpha)

Let hat(alpha), hat(beta), hat(gamma) be three unit vectors such that hat(alpha) xx (hat(beta) xx hat(gamma)) = (1)/(2)(hat(beta) + hat(gamma)) where hat(alpha) xx (hat(beta) xx hat(gamma)) = (hat(alpha).hat(gamma)) hat(beta) - (hat(alpha).hat(beta))hat(gamma) . If hat(beta) is not parallel to hat(gamma) , then the angle between hat(alpha) and hat(beta) is

If alpha, beta and gamma are the roots of x^3 - x^2-1 = 0, then value of (1+ alpha)/(1-alpha) + (1+ beta) / (1 - beta) + (1 + gamma) / (1 - gamma) is