Home
Class 12
MATHS
By using properties of determinants , s...

By using properties of determinants , show that : (i) ` {:|( 1,a,a^(2)),( 1,b,b^(2)),( 1,c,c^(2))|:}=(a-b)(b-c) (c-a) `
(ii) ` {:|( 1,1,1),( a,b,c) ,(a^(3) , b^(3), c^(3))|:} =( a-b) (b-c)( c-a) (a+b+c) `

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.3|7 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.1|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

Without expanding the determinant, prove that |{:(1,a,a^2),(1,b,b^2),(1,c,c^2):}|=(a-b)(b-c)(c-a) .

|{:(1,1,1),(a^2,b^2,c^2),(a^3,b^3,c^3):}|=(b-c)(c-a)(a-b)(bc+ca+ab)

Using the properties of determinants, prove that following |(a-b-c,2a,2a),(2b,b-c-a,2b),(2c,2c,c-a-b)|=(a+b+c)^3

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Using properties of determinants prove that, |{:((b+c)^(2),a^(2),a^(2)),(b^(2),(c+a)^(2),b^(2)),(c^(2),c^(2),(a+b)^(2)):}|=2abc(a+b+c)^(3)

(b) answer any one question : (i) prove that |[1,a,a^2],[1,b,b^2],[1,c,c^2]| =(a-b)(b-c)(c-a)

Using the property of determinants and without expanding {:|( a-b,b-c, c-a),( b-c,c-a,a-b),( c-a,a-b,b-c)|:} =0

|{:(1,b+c,b^2+c^2),(1,c+a,c^2+a^2),(1,a+b,a^2+b^2):}|=(b-c)(c-a)(a-b)

Prove |{:(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ab,c^3):}|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

|{:(1,a,b+c),(1,b,c+a),(1,c,a+b):}|=0