Home
Class 12
MATHS
Show that |{:(a^(2)+1,ab,ac),(ab,b^(2)+1...

Show that `|{:(a^(2)+1,ab,ac),(ab,b^(2)+1,bc),(ca,bc,c^(2)+1):}|=1+a^(2)+b^(2)+c^(2)`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.3|7 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.4|5 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.1|8 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

|{:(a^2,ab,ac),(ab,b^2,bc),(ca,bc,c^2):}|= ?

Using the property of determinants and without expanding {:|( -a^(2) , ab,ac),( ba,-b^(2) , bc) ,( ca, cb, -c^(2)) |:} =4a^(2) b^(2) c^(2)

Prove that, abs((a^2+1,ab,ac),(ab,b^2+1,bc),(ca,cb,c^2+1)) =1+ a^2+b^2+c^2 .

Show that, |{:(a^2+10,ab,ac),(ab,b^2+10,bc),(ca,bc,c^2+10):}| is divisible by 100 .

The determinant |(a^(2)+10,ab, ac),(ab, b^(2)+10, bc),(ac, bc, c^(2)+10)| is

If A=[{:(0,c,-b),(-c,0,a),(b,-a,0):}] and B=[{:(a^(2),ab,ac),(ab,b^(2),bc),(ac,bc,c^(2)):}] , then (A+B)^(2)= (a) A (b) B (c) I (d) A^(2)+B^(2)

Prove that, abs((-a^2,ab,ac),(ba,-b^2,bc),(ca,cb,-c^2)) =4 a^2b^2c^2 .

Prove that {:|( a^(2) , bc, ac+c^(2)),( a^(2) +ab,b^(2) ,ac),( ab,b^(2) +bc,c^(2)) |:} =4a^(2) b^(2) c^(2)

Without expanding the determinant, prove that {:|( a, a ^(2), bc ),( b ,b ^(2) , ca),( c, c ^(2) , ab ) |:} ={:|( 1, a^(2) , a^(3) ),( 1,b^(2) , b^(3) ),( 1, c^(2),c^(3)) |:}

Evalute |{:(0,c,b),(c,0,a),(b,a,0):}| and hence show that, |{:(" "-a^2," "ab," "ac),(" "ab," "-b^2," "bc),(" "ca," "bc," "-c^2):}|=4a^2b^2c^2