Home
Class 12
MATHS
Find the inverse of each of the matrices...

Find the inverse of each of the matrices (if it exists )
` {:[( 1,0,0),( 0 ,cos alpha , sin alpha ),( 0, sin alpha , -cos alpha ) ]:} `

Text Solution

Verified by Experts

The correct Answer is:
` {:(1,0,0),(0,cos alpha , sin alpha ),(0, sin alpha ,-cos alpha ):}`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.6|16 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.4|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

Find the adjoint and inverse of each of the following matrices : [(cos alpha, sin alpha), (-sin alpha, cosalpha)]

If A=[(cos alpha, sin alpha),(-sin alpha, cos alpha)] , then verify that A'A=I

If sin alpha = sin beta and cos alpha = cos beta then-

"Evaluate "Delta ={:|( 0 , sin alpha ,-cos alpha ) ,( -sin alpha , 0 , sin beta ),( cos alpha , -sin beta , 0)|:}

Find the value of sin^6 alpha+ cos^6 alpha+ 2sin^2 alpha cos^2 alpha .

Prove that, (1+ cos 2 alpha + sin 2 alpha)/(1-cos 2 alpha +sin 2 alpha)=cot alpha

Prove that the product of the matrices {:[(cos ^(2)alpha,cos alpha sin alpha ),(cos alpha sinalpha, sin^(2)alpha)]and {:[(cos ^(2)beta,cosbetasinbeta),(cos betasinbeta,sin^(2)beta)] is the null matrix when alpha and beta differ by an odd multiple of (pi)/(2) .

If A=[(0,-"tan"(alpha)/(2)),("tan"(alpha)/(2),0)] and I is the identity matrix of order 2, show that I+A=(I-A)[(cos alpha,-sin alpha),(sin alpha, cos alpha)]

Prove that, 1/3 ( cos^(3) alpha sin 3 alpha + sin^(3) alpha cos 3 alpha) = 1/4 sin 4 alpha

NCERT BANGLISH-DETERMINANTS -EXERCISE 4.5
  1. Find adjoint of each of the matrices {:[( 1,2),( 3,4)]:}

    Text Solution

    |

  2. Find adjoint of each of the matrices {:[( 1,-1,2),( 2,3,5),( -2,0,...

    Text Solution

    |

  3. Verify A (adj A) = ( adj A) A= |A| I in Excercises 3 and 4 {:[( 2,3),...

    Text Solution

    |

  4. A= {:[( 1,-1,2),( 3,0,-2),( 1,0,3) ]:} find determinant of A

    Text Solution

    |

  5. Find the inverse of each of the matrices (if it exists ) {:[( 2,-2),...

    Text Solution

    |

  6. Find the inverse of each of the matrices (if it exists ) {:[( -1,5),...

    Text Solution

    |

  7. Find the inverse of each of the matrices (if it exists ) {:[( 1,2,3),...

    Text Solution

    |

  8. Find the inverse of each of the matrices (if it exists ) {:[( 1,0,0)...

    Text Solution

    |

  9. Find the inverse of each of the matrices (if it exists ) {:[( 2,1,3...

    Text Solution

    |

  10. Find the inverse of each of the matrices (if it exists ) {:[( 1,-1,2...

    Text Solution

    |

  11. Find the inverse of each of the matrices (if it exists ) {:[( 1,0,0)...

    Text Solution

    |

  12. Let A= {:[( 3,7),( 2,5) ]:} and B = {:[( 6,8),( 7,9) ]:} .Verify t...

    Text Solution

    |

  13. If A= {:[( 3,1),( -1,2) ]:} Show that A^(2) -5A +7I=O.Hence find A^(...

    Text Solution

    |

  14. For the matrix A={:[( 3,2),( -1,2) ]:} . Find the numbers a and b su...

    Text Solution

    |

  15. A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +1...

    Text Solution

    |

  16. If A= {:[( 2,-1,1),(-1,2,-1),(1,-1,2) ]:} Verify that A^(3) -6A^...

    Text Solution

    |

  17. Let A be a nonsingular square matrix of order 3xx3.Then |adj A| is equ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1)) is equal t...

    Text Solution

    |