Home
Class 12
MATHS
If A= {:[( 3,1),( -1,2) ]:} Show that ...

If A= ` {:[( 3,1),( -1,2) ]:} ` Show that `A^(2) -5A +7I`=O.Hence find `A^(-1) `

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(7) {:[(2,-1),(1,3)]:}`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.6|16 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise EXERCISE 4.4|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE ON CHAPTER 5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise MISCELLANEOUS EXERCISE|18 Videos

Similar Questions

Explore conceptually related problems

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

If A = ((3,1),(-1,2)), I = ((1,0),(0,1)) and O = ((0,0),(0,0)) show that, A^(2) - 5A + 7I = O . Hence find A^(-1) .

If A=({:(2,-1),(1,3):}) , then show that A^2-5A+7I_2=0 : hence find A^(-1) .

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

If A=([2,-1],[1,3]) then show that A^2-5A+7I_2=0 hence find A^(-1)

If A= {:[( 2,-1,1),(-1,2,-1),(1,-1,2) ]:} Verify that A^(3) -6A^(2) +9A -4I=O and hence find A^(-1)

A = [[3,-5],[-4,2]] , verify that A^2 -5A-14I=0, hence find A^(-1)

Show that the matrix A= [(2,-3),(3,4)] satisfies the equation x^(2) - 6x + 17 = 0. Hence find A^(-1)

If A = [[3,1],[-1,2]],I= [[1,0],[0,1]] and O = [[0,0],[0,0]] show that A^2-5A+7I=0 . Hence find A^(-1) .

Show that the matrix A=({:(2,-3),(3,4):}) satisfies the equation A^(2)-6A+17I=O and hence find A^(-1) where I is the identity matrix and O is the null matrix of order 2 times 2 .

NCERT BANGLISH-DETERMINANTS -EXERCISE 4.5
  1. Find adjoint of each of the matrices {:[( 1,2),( 3,4)]:}

    Text Solution

    |

  2. Find adjoint of each of the matrices {:[( 1,-1,2),( 2,3,5),( -2,0,...

    Text Solution

    |

  3. Verify A (adj A) = ( adj A) A= |A| I in Excercises 3 and 4 {:[( 2,3),...

    Text Solution

    |

  4. A= {:[( 1,-1,2),( 3,0,-2),( 1,0,3) ]:} find determinant of A

    Text Solution

    |

  5. Find the inverse of each of the matrices (if it exists ) {:[( 2,-2),...

    Text Solution

    |

  6. Find the inverse of each of the matrices (if it exists ) {:[( -1,5),...

    Text Solution

    |

  7. Find the inverse of each of the matrices (if it exists ) {:[( 1,2,3),...

    Text Solution

    |

  8. Find the inverse of each of the matrices (if it exists ) {:[( 1,0,0)...

    Text Solution

    |

  9. Find the inverse of each of the matrices (if it exists ) {:[( 2,1,3...

    Text Solution

    |

  10. Find the inverse of each of the matrices (if it exists ) {:[( 1,-1,2...

    Text Solution

    |

  11. Find the inverse of each of the matrices (if it exists ) {:[( 1,0,0)...

    Text Solution

    |

  12. Let A= {:[( 3,7),( 2,5) ]:} and B = {:[( 6,8),( 7,9) ]:} .Verify t...

    Text Solution

    |

  13. If A= {:[( 3,1),( -1,2) ]:} Show that A^(2) -5A +7I=O.Hence find A^(...

    Text Solution

    |

  14. For the matrix A={:[( 3,2),( -1,2) ]:} . Find the numbers a and b su...

    Text Solution

    |

  15. A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +1...

    Text Solution

    |

  16. If A= {:[( 2,-1,1),(-1,2,-1),(1,-1,2) ]:} Verify that A^(3) -6A^...

    Text Solution

    |

  17. Let A be a nonsingular square matrix of order 3xx3.Then |adj A| is equ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1)) is equal t...

    Text Solution

    |