Home
Class 12
MATHS
Find (dy)/(dx) in the following : y = ...

Find `(dy)/(dx)` in the following :
`y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3))`.

Text Solution

Verified by Experts

The correct Answer is:
`(3)/(1+x^(2))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise EXERCISE 5.4|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise EXERCISE 5.5|18 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise EXERCISE 5.2|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT BANGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise Miscellaneous Exercises on Chapter 4|18 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following : y= sin^(-1) (2x sqrt(1-x^(2))), (-1)/(sqrt(2)) lt x lt (1)/(sqrt(2)) .

Integrate : int tan^(-1) [(3x-x^(3))/(1-3x^(2))]dx [-(1)/(sqrt(3))lt x lt(1)/(sqrt(3))]

Find (dy)/(dx) in the following : y= sin^(-1)((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

Find (dy)/(dx) in the following : y= cos^(-1) ((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

Find (dy)/(dx) in the following : y= cos^(-1) ((2x)/(1+x^(2))), -1 lt x lt1 .

Find (dy)/(dx) in the following : y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2)) .

If y=tan^(-1)((3x-x^3)/(1-3x^2)),-1/(sqrt(3))ltxlt1 /(sqrt(3)), then find (dy)/(dx)

y=tan^(-1) ((3x-x^3)/(1-3x^2)) . Find dy/dx .

Prove that 3 tan^(-1) x= {(tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " -(1)/(sqrt3) lt x lt (1)/(sqrt3)),(pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x gt (1)/(sqrt3)),(-pi + tan^(-1) ((3x - x^(3))/(1 - 3x^(2))),"if " x lt - (1)/(sqrt3)):}

Write the following function in the simplest form: tan^(-1)((3a^2x-x^3)/(a^3-3a x^2)), a >0;(-a)/(sqrt(3))lt=xlt=a/(sqrt(3))