Home
Class 12
MATHS
Find (dy)/(dx) in the following : y= s...

Find `(dy)/(dx)` in the following :
`y= sin^(-1) (2x sqrt(1-x^(2))), (-1)/(sqrt(2)) lt x lt (1)/(sqrt(2))`.

Text Solution

Verified by Experts

The correct Answer is:
`(2)/(sqrt(1-x^(2)))`
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise EXERCISE 5.4|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise EXERCISE 5.5|18 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    NCERT BANGLISH|Exercise EXERCISE 5.2|10 Videos
  • APPLICATION OF INTEGRALS

    NCERT BANGLISH|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise Miscellaneous Exercises on Chapter 4|18 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) in the following : y = tan^(-1)((3x-x^(3))/(1-3x^(2))), -(1)/(sqrt(3)) lt x lt (1)/(sqrt(3)) .

Find (dy)/(dx) in the following : y= sec^(-1) ((1)/(2x^(2)-1)), 0 lt x lt (1)/(sqrt(2)) .

Find (dy)/(dx) in the following : y= cos^(-1) ((2x)/(1+x^(2))), -1 lt x lt1 .

Find (dy)/(dx) in the following : y= sin^(-1)((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

Find (dy)/(dx) in the following : y= cos^(-1) ((1-x^(2))/(1+x^(2))), 0 lt x lt 1 .

Find (dy)/(dx) when : y="sin"^(-1) (1)/(sqrt(1+x^(2)))+tan^(-1) ( (sqrt(1+x^(2))-1)/(x))

Find (dy)/(dx) for the function: y=sin^(-1)sqrt((1-x))+cos^(-1)sqrt(x)

Integrate : int tan^(-1) [(3x-x^(3))/(1-3x^(2))]dx [-(1)/(sqrt(3))lt x lt(1)/(sqrt(3))]

int(2sin^-1x)/sqrt(1-x^2)dx =

Differentiate sin^(-1)(2xsqrt(1-x^2)) with respect to x , if -1/(sqrt(2)) < x < 1/(sqrt(2))