Home
Class 12
MATHS
x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 ...

`x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 = 0`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.3|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.4|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.1|12 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT BANGLISH|Exercise EXERCISE 7.12|44 Videos

Similar Questions

Explore conceptually related problems

If y= tan^-1(x/a) find y_2 .

The circle x^2 + y^2 - 2x - 4y + 1 = 0 and x^2 + y^2 + 4x + 4y - 1 = 0

Show that the general solution of the differential equation (dy)/(dx) + (y^(2) + y + 1)/(x^(2) + x + 1) = 0 is given by ( x + y + 1) = A(1 - x - y - 2xy) , where A is parameter.

If y= (tan^(-1)x)^(2) , show that (x^(2)+1)^(2) y_(2)+2x(x^(2)+1)y_(1)=2 .

If tan ^(-1) ""x + tan ^(-1) ""y + tan ^(-1) ""z=(pi)/(2) and x + y +z = sqrt(3) then show that x =y=z.

1 + y^(2) + (x - e^(tan^(-1)y)) dy/dx = 0

prove that . Tan ^(-1) x- tan ^(-1 )y = cos ^(-1) (1+xy)/(sqrt((1+x^(2))(1+y^(2)))).

e^(x) tan y dx + (1 - e^(x))sec^(2)y dy = 0

Solve : (1+y^(2))dx=(tan^(-1)y-x)dy , given that y=0 when x = -1.

SolveL (1+y)^2dx=(tan^(-1)y-x)dy , given that y= 0 when x= -1.