Home
Class 12
MATHS
y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x...

`y = sqrt(a^(2) - x^(2)) x ne (-a, a) : x + y (dy)/(dx) = 0(y ne 0)`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.3|12 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.4|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT BANGLISH|Exercise EXERCISE - 9.1|12 Videos
  • DETERMINANTS

    NCERT BANGLISH|Exercise Miscellaneous Exercises on Chapter 4|18 Videos
  • INTEGRALS

    NCERT BANGLISH|Exercise EXERCISE 7.12|44 Videos

Similar Questions

Explore conceptually related problems

(dy)/(dx) + y = 1( y ne 1)

y^(2) + (x - 1/y ) dy/ dx = 0

y = x sin x : xy' = y + x sqrt(x^(2) - y^(2))(x ne 0 and x gt y or x lt -y)

(x - y)dy - (x + y) dx = 0

Solve: y^2 + (x - 1/y)(dy)/(dx) = 0.

solve x(dy)/(dx) - y + x sin ((y)/(x)) = 0

If x sqrt(1-y^(2))+y sqrt(1-x^(2))=k , then the value of (dy)/(dx) at x=0 is -

y = Ax : xy' = y (x ne 0)

If xy=a[y+sqrt(y^(2)-x^(2))] , prove that, x^(3)(dy)/(dx)=y^(2)(y+sqrt(y^(2)-x^(2)))

If y = x^(5) show that x(dy)/(dx)-5y = 0 .