Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then the value of the expression `1(2-omega)(2-omega^2)+2(3-omega)(3-omega^2) +...+(n-1) (n-omega)(n-omega^2) (n>=2) ` is equal to (A) `(n^2(n+1)^2)/4 - n` (B) `(n^2(n+1)^2)/4 +n` (C) `(n^2(n+1))/4 -n` (D) `(n(n+1)^2)/4 -n`

Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity,then the value of the expression 1(2-omega)(2-omega^(2))+2(3-omega)(3-omega^(2))+...+(n-1)(n-omega)(n-omega^(2))(n-omega^(2))(n>=2) is equal to (A) (n^(2)(n+1)^(2))/(4)-n( B) (n^(2)(n+1)^(2))/(4)+n( C) (n^(2)(n+1))/(4)-n(D)(n(n+1)^(2))/(4)-n

If omega is a complex cube root of unity then the value of (1+omega)(1+omega^(2))(1+omega^(4)).......2n terms-

If omega is a complex cube roots of unity, then find the value of the (1+ omega)(1+ omega^(2))(1+ omega^(4)) (1+ omega^(8)) … to 2n factors.

If omega(!=1) is a cube root of unity,then the sum of the series S=1+2 omega+3 omega^(2)+....+3n omega^(3n-1) is

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

Suppose omega ne 1 is cube root of unity. If 1(2-omega) (2-omega^(2)) + 2(3 - omega) (3 - omega^(2)) + ….+ (n-1)(n-omega) (n-omega^(2)) = 33 , then n is equal to ____________