Home
Class 12
MATHS
The number of real solutions of the equa...

The number of real solutions of the equation
`sqrt(1+cos2x) = sqrt(2)cos^(-1)(cosx)` in `[pi/2,pi]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of real solutions of the equation sqrt(1+cos2x)=sqrt2cos^(-1)(cosx) in [pi/2,pi] is _____

Find the number of real solutions of the equation sqrt(1 + cos 2x) = sqrt2 cos^-1 (cosx) , where x in [pi/2 , pi]

The number of real solutions of the equation sqrt(1+cos 2x) = sqrt2 cos^-1 in [pi/2, pi) is

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sin x),-pi<=x<=pi is 0(b)1(c)2(d) infinite

The number of real solution of the equation sqrt(1+cos2x)=sqrt2 sin^(-1)(sinx),-piltxltpi"is"

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx),-pilt=xlt=pi is (a) 0 (b) 1 (c) 2 (d) infinite

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx),-pilt=xlt=pi is 0 (b) 1 (c) 2 (d) infinite

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx),-pilt=xlt=pi is (a) 0 (b) 1 (c) 2 (d) infinite

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx),-pilt=xlt=pi is (a) 0 (b) 1 (c) 2 (d) infinite

The number of real solutions of the equation sqrt(1+cos2x)=sqrt(2)sin^(-1)(sinx),-pilt=xlt=pi is 0 (b) 1 (c) 2 (d) infinite