Home
Class 12
MATHS
The equation of a circle of radius 1 tou...

The equation of a circle of radius `1` touching the circles `x^2 + y^2 - 2 |x| = 0` is: (A) `x^2 + y^2 + 2sqrt(3x) - 2 = 0` (B) `x^2 + y^2 - 2sqrt(3)y+2=0` (C) `x^2 + y^2 + 2sqrt(3) y + 2 = 0` (D) `x^2 + y^2 + 2 sqrt(3) x + 2 = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equation of a circle of radius 1 touching the circles x^2+y^2-2|x|=0 is (a) x^2+y^2+2sqrt(2)x+1=0 (b) x^2+y^2-2sqrt(3)y+2=0 (c) x^2+y^2+2sqrt(3)y+2=0 (d) x^2+y^2-2sqrt(2)+1=0

The equation of a circle of radius 1 touching the circles x^2+y^2-2|x|=0 is (a) x^2+y^2+2sqrt(2)x+1=0 (b) x^2+y^2-2sqrt(3)y+2=0 (c) x^2+y^2+2sqrt(3)y+2=0 (d) x^2+y^2-2sqrt(2)+1=0

The equation of a circle of radius 1 touching the circles x^2+y^2-2|x|=0 is (a) x^2+y^2+2sqrt(2)x+1=0 (b) x^2+y^2-2sqrt(3)y+2=0 (c) x^2+y^2+2sqrt(3)y+2=0 (d) x^2+y^2-2sqrt(2)+1=0

Equation of a circle of radius 2 and touching the circles x^2+y^2-4|x|=0 is x^2+y^2+2sqrt(3)y+2=0 x^2+y^2+4sqrt(3)y+8=0 x^2+y^2-4sqrt(3)y+8=0 none of these

The equation of a circle of radius 1touching the circles x^(2)+y^(2)-2|x|=0 is x^(2)+y^(2)+2sqrt(2)x+1=0x^(2)+y^(2)-2sqrt(3)y+2=0x^(2)+y^(2)+2sqrt(3)y+2=0x^(2)+y^(2)-2sqrt(2)+1=0

Equation of a circle of radius 2 and touching the circles x^(2)+y^(2)-4|x|=0 is x^(2)+y^(2)+2sqrt(3)y+2=0x^(2)+y^(2)+4sqrt(3)y+2=0x^(2)+y^(2)-4sqrt(3)y+8=0 none of these

The equation of the circle which cuts orthogonally the three circles x^(2) + y^(2) + 4x + 2y + 1 = 0 , 2x^(2) + 2y^(2) + 8x + 6y - 3 = 0 , x^(2) + y^(2) + 6x - 2y - 3 = 0 is

The equation of the circle whose diamter is the common chord of the circles x^(2) + y^(2) + 2x + 3y + 2 = 0 " and" x^(2) + y^(2) + 2x - 3y - 4 = 0 is