Home
Class 12
MATHS
sin^(-1)(cosx)=(pi)/(2)-x is valid for...

`sin^(-1)(cosx)=(pi)/(2)-x` is valid for

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

Prove that tan^(-1)((cosx)/(1+sin x)) =(pi)/(4)-(x)/(2), x in (-(pi)/(2), (pi)/(2)) .

Assertion : If 0ltxlt(pi)/2 then sin^(-1)(cosx)+cos^(-1)(sinx)=pi-2x Reason : cos^(-1)x=(pi)/2-sin^(-1)x,AA x in [-1,1]

Evaluate lim_(xto pi) (sin^(-1)(1+cosx).sec((x)/(2)))/((x-pi)).

Evaluate lim_(xto pi) (sin^(-1)(1+cosx).sec((x)/(2)))/((x-pi)).

Evaluate lim_(xto pi) (sin^(-1)(1+cosx).sec((x)/(2)))/((x-pi)).