Home
Class 12
MATHS
If A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]], ...

If `A=[[0, 1, 0], [1, 0, 0], [0, 0, 1]]`, then `A^(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[[1 ,0 ,0], [0 ,1 ,1] ,[0,-2, 4]],I=[[1 ,0 ,0 ],[0, 1, 0], [0, 0, 1]] and A^(-1)=[1/6(A^2+c A+d I)]dot Then value of c and d are

If A=[[0,0,1],[0,1,0],[1,0,0]] , show that A^(-1)=A

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is

If A_1=[(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)],A_2=[(0, 0, 0,i),(0, 0,-i, 0), (0,i,0, 0),(-i,0, 0, 0)],t h e nA_i A_k+A_k A_i is equal to a. 2Iifi=k b. Oifi!=k c. 2lifi!=k d. O always

If [ [ 1 , 0 , 0 ] , [ 0 ,1 , 0 ] , [ 0 , 0 , 1 ] ] [ [ a ] , [ b ] , [ c ] ] = [ [ 2 ] , [ 1 ] , [ -3 ] ] , then find the value of a + b + c

If x ,\ y ,\ z are non-zero real numbers, then the inverse of the matrix A=[[x,0, 0],[ 0,y,0],[ 0, 0,z]] , is (a) [[x^(-1),0 ,0 ],[0,y^(-1),0],[ 0, 0,z^(-1)]] (b) x y z[[x^(-1),0 ,0],[ 0,y^(-1),0],[ 0, 0,z^(-1)]] (c) 1/(x y z)[[x,0, 0],[ 0,y,0],[ 0, 0,z]] (d) 1/(x y z)[[1, 0, 0],[ 0 ,1, 0],[ 0, 0, 1]]