Home
Class 12
MATHS
If alpha in (0,pi/2), then sqrt(x^2+x)...

If `alpha in (0,pi/2)`, then `sqrt(x^2+x)+tan^2alpha/sqrt(x^2+x)` is always greater than or equal to (a) `2tanalpha` (b)1 (c) 2 (d) `sec2alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha in(0,(pi)/(2)), then sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)) is always greater than or equal to (a)2tan alpha(b)1 (c) 2(d)sec2 alpha

If alpha in(0,(pi)/(2)) then sqrt(x^(2)+x)+((tan alpha)^(2))/(sqrt(x^(2)+x)) is always greater than or equal to

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If pi

Let a in (0,(pi)/(2)) and f(x)=sqrt(x^(2)+x)+(tan^(2)alpha)/(sqrt(x^(2)+x)), x gt 0 . If the least value of f(x) is 2sqrt3 , then alpha is equal to

If tan alpha =2 and 0 lt alpha lt (pi)/(2) then prove that x =a, pi +alpha are the solution of the equation (tan(2alpha-x))/(tan (2alpha+x))=11 that lies between 0 and 2pi

If 0

int_( to )(x^(2)-1)/(x sqrt(x^(2)+alpha x+1)sqrt(x^(2)+beta x+1))dx is equal

If (3 pi)/(4)