Home
Class 12
MATHS
दर्शाइए कि दो शून्येतर सदिशों bar(a) और ...

दर्शाइए कि दो शून्येतर सदिशों `bar(a)` और `bar(b)` के लिए,
`|bar(a)|bar(b)+|bar(b)|bar(a),|bar(a)|bar(b)-|bar(b)|bar(a)` पर लम्ब है |

Promotional Banner

Similar Questions

Explore conceptually related problems

(bar(a)+2bar(b)-bar(c))*(bar(a)-bar(b))xx(bar(a)-bar(bar(c)))=

If [bar(a)+2bar(b)2bar(b)+bar(c)5bar(c)+bar(a)]=k[bar(a)bar(b)bar(c)]

If |bar(a)+bar(b)|<|bar(a)-bar(b)| then (bar(a),bar(b)) is

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

If |bar(a)|=|bar(b)|=1 and |bar(a)timesbar(b)|=bar(a)*bar(b) , then |bar(a)+bar(b)|^(2)=

|bar(b)|bar(a)+|bar(a)|bar(b) and |bar(b)|bar(a)-|bar(a)|bar(b) are orthogonal to each other

If bar(u)=bar(a)+bar(b),bar(v)=bar(a)-bar(b),|bar(a)|=|bar(b)|=2 then |bar(u)xxbar(v)|=

([[bar(a),bar(b),bar(c)]])/([[bar(b),bar(a),bar(c)]]) =

Prove that bar(a)x[bar(a)x(bar(a) x bar(b))] = (bar(a).bar(a))(bar(b)xbar(a)) .

If (bar(a)+bar(b))*(bar(a)+bar(b))=|bar(a)|^(2)+|bar(b)|^(2),bar(a)!=0,bar(b)!=0 , then