Home
Class 12
MATHS
If |z|=1 and w=(z-1)/(z+1) (where z!=-1)...

If `|z|=1` and `w=(z-1)/(z+1)` (where `z!=-1),` then `R e(w)` is 0 (b) `1/(|z+1|^2)` `|1/(z+1)|,1/(|z+1|^2)` (d) `(sqrt(2))/(|z|1""|^2)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1 and w=(z-1)/(z+1) (where z!=-1) then Re(w) is (A) 0(B)-(1)/(|z+1|^(2))(C)|(z)/(z+1)|(1)/(|z+1|^(2))(D)(sqrt(2))/(|z+1|^(2))

If |z|=1 and omega=(z-1)/(z+1) (where z in -1 ), then Re (omega) is

If w=(z)/(z-(1)/(3)i) and |w|=1, then z lies on

If |z_(1)|!=1,|(z_(1)-z_(2))/(1-bar(z)_(1)z_(2))|=1, then

If |z|=1 and |omega-1|=1 where z, omega in C ,then the range of values of |2z-1|^(2)+|2 omega-1|^(2) equals

If z_(1) and z_(2) are two complex numbers,then (A) 2(|z|^(2)+|z_(2)|^(2)) = |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) (B) |z_(1)+sqrt(z_(1)^(2)-z_(2)^(2))|+|z_(1)-sqrt(z_(1)^(2)-z_(2)^(2))| = |z_(1)+z_(2)|+|z_(1)-z_(2)| (C) |(z_(1)+z_(2))/(2)+sqrt(z_(1)z_(2))|+|(z_(1)+z_(2))/(2)-sqrt(z_(1)z_(2))|=|z_(1)|+|z_(2)| (D) |z_(1)+z_(2)|^(2)-|z_(1)-z_(2)|^(2) = 2(z_(1)bar(z)_(2)+bar(z)_(1)z_(2))

If |(z-1)/(z-4)|=2 and |(w-4)/(w-1)|=2 , (where z,w in C ) .Then the value of |z-w|_(max)+|z-w|_(min)

If |z-1|<=2 and | omega z-1-omega^(2)|=a then (a) 0<=a<=2 (b) (1)/(2)<=a<=(sqrt(3))/(2) (c) (sqrt(3))/(2)-(1)/(2)<=a<=(1)/(2)+(sqrt(3))/(2)

If |Z-i|=sqrt(2) then arg((Z-1)/(Z+1)) is (where i=sqrt(-1)) ; Z is a complex number )