Home
Class 12
MATHS
Find the x satisfying the equation log...

Find the `x` satisfying the equation `log^2(1+4/x)+log^2(1-4/(x+4))=2log^2(2/(x-1)-\ 1)dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the x satisfying the equation log^(2)(1+(4)/(x))+log^(2)(1-(4)/(x+4))=2log^(2)((2)/(x-1)-backslash1)

Find the value of x satisfying the equation log_((1)/(2))(x-1)+log_((1)/(2))(x+1)-log_((1)/(sqrt(2)))(7-x)=1

Find the values of x satisfying the equation |x-2|^(log_(3)x^(4)-3log_(x)9)(x-2)^(10)=1 .

The value of x :satisfying the equation log_(4)(2log_(2)x)+log_(2)(2log_(4)x)=2 is

Find the value of x satisfying the equation ((log)_3 (3x)^(1/3)+(log)_x(3x)^(1/3))dot(log)_3x^3+((log)_3(x/3)^(1/3)+(log)_x(3/x)^(1/3))dot(log)_3x^3=2

Solve the equation for x : log4+(1+1/(2x))log3=log(3^(1/x)+27)

Solve the equation for x : log4+(1+1/(2x))log3=log(3^(1/x)+27)

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))

Find the number of real values of x satisfying the equation. log_(2)(4^(x+1)+4)*log_(2)(4^(x)+1)=log_(1//sqrt(2)) sqrt((1)/(8))