Home
Class 12
MATHS
Find lim(x to 1) f(x), where f(x) = {{:(...

Find `lim_(x to 1) f(x)`, where `f(x) = {{:(x + 1, x != 1),(0, x = 1):}}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(x to 0) f(x) , where f(x) = {{:(x -1,x lt 0),(0,x = 0),(x =1,x gt 0):}

Find lim_(x to 1) f(x) , where f(x)={{:(x^(2)-1,xle1),(-x^(2)-1,xgt1):}

Find the limits lim_ (x to 1) f(x) where f(x)={:{(x^2+2,x ne1),(1,x=1):}

Find (lim)_(x rarr1)f(x), where f(x)=[x^(2)-1,x 1

lim_(x rarr1)f(x), where f(x)={x^(2)-1,x 1

Find lim_(x to 0)f(x) and lim_(x to 1)f(x) , where f(x)={{:(2x+3",", x le 0), (3(x+1)",", x gt 0):}

Evaluate lim_(x rarr 0) f(x) and lim_(x rarr 1) f(x), where f(x) = { (2x + 3 , x le 0) , (3(x+1) , x gt 0)}

Find lim_(xrarr1) f(x) where f(x)= {[(x^2-1)/(x-1), x ne 1],[1, x=1]:}

Find lim_(x rarr 1)f(x) where f(x)= {(x^2-1,xle1),(-x^2-1,x>1):}