Home
Class 12
MATHS
If I(n)=int(0)^(pi)x^(n)sinxdx, then fin...

If `I_(n)=int_(0)^(pi)x^(n)sinxdx`, then find the value of `I_(5)+20I_(3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If I_(n)=int_(0)^(pi)x^(n). sin x dx then the value of I_(5)+ 20I_(3)=

If I_(n) = int_(0)^(pi//2) x^(n).cos x dx then the value of I_(9)+72I_(7)=

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of (I_(8)+I_(6)) is -

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

Consider the integral I_(n)=int_(0)^((n)/(4))(sin(2n-1)x)/(sinx)dx , then the value of I_(20)-I_(19) is

If I_(n)=int_(0)^(1)(1-x^(5))^(n)dx , then the value of (55)/(8)((I_(10))/(I_(11))) is equal to-

If I_(n)=int_(0)^((pi)/(4)) tan^(n)x dx , then the value of lim_(n to oo) n(I_(n)+I_(n-2)) is -

If the integral I_(n)=int_(0)^((pi)/(2))(sin(2n-1)x)/(sinx)dx ,. Then the value of [I_(20)]^(3)-[I_(19)]^(3) is