Home
Class 10
MATHS
यदि tan A=ntan B तथा sin A=m sin B, तो स...

यदि `tan A=ntan B` तथा `sin A=m sin B,` तो सिद्ध करो कि
`cos ^(2)A = (m^(2)-1)/(n^(2)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A = n tan B and sin A = m sin B, prove that : cos^(2) A = (m^(2) - 1)/(n^(2) - 1)

If tan A = n tan B and sin A = m sin B , show that cos^(2)A= (m^(2)-1)/(n^(2)-1) .

If tan A=n tan B and sin A=m sin B, prove that cos^(2)A=(m^(2)-1)/(n^(2)-1)

If "tan" alpha= n tan beta and sin alpha =m sin beta prove that : cos^(2)alpha=(m^(2)-1)/(n^(2)-1)

If tan alpha= n tan beta and sin alpha= m sin beta , prove that cos^2 alpha= (m^2-1)/(n^2-1) .

cos A + sin B = m sin A + cos Bm (A + B) = m ^ (2) + n ^ (2) -2

Sin A=m sin B,show that , tan((A-B)/2)=(m-1)/(m+1)tan((A+B)/2)

If tanA=n tan B and sinA=m sin B, then the value of cos^2 A is यदि tanA=n tan B और sinA=m sin B, तो cos^2 A का मान है

If sin A=a cos B and cos A=b sin B then tan^(2)B =

If sin A = m sin B, "prove that" "tan" (A-B)/2 = (m-1)/(m+1) "tan" (A+B)/2