Home
Class 12
MATHS
[" Whow that locus of poles of the tange...

[" Whow that locus of poles of the tangent to "],[" the circle "x^(2)+y^(2)=a^(2)" w.r.t the circle "],[(x+a)^(2)+y^(2)=2a^(2)" is "y^(2)+4ax=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of poles of tangents to the circle x^(2)+y^(2)=a^(2) w.r.t the circle x^(2)+y^(2)+2ax-a^(2)=0 is

The locus of poles of tangents to the circle x^(2)+y^(2)=a^(2) w.r.t the circle x^(2)+y^(2)+2ax-a^(2)=0 is

Show that the poles of the tangents to the circle x^(2)+y^(2) = a^(2) with respect to the circle (x+a)^(2)+y^(2)=2a^(2) lie on y^(2) +4ax =0 .

The locus of poles of tangents to the circle (x-p)^(2)+y^(2)=b^(2) w.r.t. the circle x^(2)+y^(2)=a^(2) is

The locus of poles of tangents to the circle (x-p)^(2)+y^(2)=b^(2) w.r.t. the circle x^(2)+y^(2)=a^(2) is

The locus of the poles of the tangents to the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 w.r.t. the circle x^2 + y^2 = a^2 is: