Home
Class 11
MATHS
" 13."([47],[4])+sum(j=1)^(5)([52-j],[3]...

" 13."([47],[4])+sum_(j=1)^(5)([52-j],[3])=([x],[y])," then "(x)/(y)=

Promotional Banner

Similar Questions

Explore conceptually related problems

C(47,4)+sum_(r=1)^5 C(52-r,3)=

The value of the expression ""^(47)C_(4) + sum_(j =1)^(5)""^(52-j)C_(3) is equal to :

If ""^(47)C_(4)+sum_(r=1)^(5) ""^(52-r)C_(3) is equal to

What is ""^(47)C_(4)+""^(51)C_(3)+ sum_(j=2)^(5) ""^(52-j)C_(3) equal to ?

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

Evaluate (47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

Evaluate ^(47)C_(4)+sum_(j=0)^(3)""^(50-j)C_(3)+sum_(k=0)^(5) ""^(56-k)C_(53-k) .

The value of (""^(47)C_(4))/(""^(57)C_(4))+sum_(j=0)^(3)(""^(50-j)C_(3))/(""^(57)C_(53))+sum_(j=0)^(5)""^((56-k)C_(53-k))/(""^(57)C_(4)) is :