Home
Class 11
MATHS
lim(x->0)(1+(asinb x)/(cosx))^(1/x), whe...

`lim_(x->0)(1+(asinb x)/(cosx))^(1/x),` where `a,b` are non zero constants is equal to :

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin^2x)/(1-cosx)

lim_(x->0)(1/x)^(1-cosx)

lim_(xrarr0)((x-1+cosx)/(x))^(1//x)

lim_(xto0)(1-cosx)/x^(2)

lim_( xrarr0) (1-cosx)/(x^(2))

lim_( xrarr0) (1-cosx)/(x^(2))

lim_(x rarr 0) (2(1-cosx))/x^2

If lim_(x→0) ​ (x^asin^b x)/(sin(x^c)) , where a , b , c in R ~{0},exists and has non-zero value. Then,

If lim_(x→0) ​ (x^asin^b x)/(sin(x^c)) , where a , b , c in R ~{0},exists and has non-zero value. Then,