Home
Class 12
MATHS
If x >1,y >1,z >1 are in GP, then 1/(1+1...

If `x >1,y >1,z >1` are in GP, then `1/(1+1nx),1/(1+1ny),1/(1+1nz)` are in (1998, 2M) AP (b) HP (c) GP (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If xgt1,ygt1,zgt1 are in G.P. then 1/(1+Inx), 1/(1+Iny), 1/(1+Inz) are in (A) A.P. (B) H.P. (C) G.P. (D) none of these

If x >1,y >1,a n dz >1 are in G.P., then 1/(1+lnx),1/(1+l ny)a n d1/(1+l nz) are in AdotPdot b. HdotPdot c. GdotPdot d. none of these

If x y z are in GP(x y z>1) then (1)/(2x+log x) , (1)/(4x+log y) , (1)/(6x+log z) are in 1) AP 2) GP 3) HP 4) AGP

If a,b,c are in GP then 1/(log_(a)x), 1/(log_(b)x), 1/(log_( c)x) are in:

If a, b, c are in GP, prove that 1/((a+b)), 1/(2b), 1/(b+c) are in AP.

If x,1,z are in A.P. x,2,z are in G.P., show thast 1/x,1/4,1/z are in A.P.

If a,b,c are in G.P.and a^(1/x)=b^(1/y)=c^(1/z) then xyz are in AP(b)GP(c)HP(d) none of these

If distinct numbers x,y,z are in G.P. and 1/(x+a),1/(y+a),1/(z+a) are in A.P., prove that a=y .