Home
Class 11
MATHS
" 3.If "z^(2)=-i," then is it true that ...

" 3.If "z^(2)=-i," then is it true that "z=+-(1)/(sqrt(2))(1-i)?

Promotional Banner

Similar Questions

Explore conceptually related problems

If z^2=-i then is it true that z=+1/sqrt2 (1-i)

If z_(1)=iz_(2) and z_(1)-z_(3)=i(z_(3)-z_(2)), then prove that |z_(3)|=sqrt(2)|z_(1)|

If z=(-1)/(2)+i(sqrt(3))/(2) , then 8+10z+7z^(2) is equal to a) -(1)/(2)-i(sqrt(3))/(2) b) (1)/(2)+isqrt(3)/(2) c) -(1)/(2)+i(3sqrt(3))/(2) d) (sqrt(3))/(2)i

If z=x+iy=z=x+iy=((1)/(sqrt(2))-(i)/(sqrt(2)))^(-25) ,where i=sqrt(-)1, then what is the fundamental amplitude of (z-sqrt(2))/(z-i sqrt(2))?

If z+sqrt(2)|z+1|+i=0, then z equals

If z_(1)=1+i, z_(2)=sqrt(3)+i, then arg ((z_(1))/(z_(2)))^(50)=

Let z _(1) = 1 + i sqrt3 and z _(2) = 1 + i, then arg ((z _(1))/( z _(2))) is

If z=(1+2i)/(2-i)-(2-i)/(1+2i), then what is the value of z^(2)+zbarz (i=sqrt(-1))

If z_1=i z_2 and z_1-z_3=i(z_3-z_2) ,then prove that |z_3|=sqrt(2)|z_1|.