Home
Class 11
MATHS
Prove that : tan 3x=(3tanx-tan^(3)x)/(1-...

Prove that : `tan 3x=(3tanx-tan^(3)x)/(1-3tan^(2)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan 3x=(3tanx-tan^3x)/(1-3tan^2x)

Prove that tan 3x= (3tan x-tan^3 x)/(1-3tan^2 x)

Show that tan 3 x=(3 tan x-tan ^(3) x)/(1-3 tan ^(2) x)

tan x+tan(x+(pi)/(3))+tan(x+2(pi)/(3))=3 prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1

If tan x+tan(x+(pi)/(3))+tan(x+(2 pi)/(3))=3 then prove that (3tan x-tan^(3)x)/(1-3tan^(2)x)=1

Prove that tan2x=(2tanx)/(1-tan^2 x)

tan^(3)x-3tanx=0

If tanx+tan(x+pi/3)+tan(x+(2pi)/3)=3 then prove that (3tanx-tan^3x)/(1-3tan^2x)=1

If t a n x+tan(x+pi/3)+tan(x+(2pi)/3)=3, then prove that (3tanx-t a n^3x)/(1-3t a n^2x)=1 .

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .