Home
Class 12
MATHS
E={x:x^(2)+x-4=0}...

E={x:x^(2)+x-4=0}

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of value (s) satisfying the equation e^(ln x3)-x^(2)-4x+4=0 is(are)

Number of solutions of the equation 4x^(2)e^(-x)-1=0

for x^(2) - 4 ne 0 , the value of (d)/(dx)[log{e^(x) ((x - 2)/(x+2))^(3//4)}]at x = 3 is

The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x))(((x+1)(x+3))/((x+2)(x+4))-e)(-x^(3)-cos x)=0

The number of real solution of equation e^(6x)+e^(4x)+2e^(3x)+12e^(2x)+e^(x)-1=0

Evaluate int (e^x)dx/(sqrt(5-4e^x-e^(2x)) , x<0 .

The number of roots of equation (((x-1)(x-3))/((x-2)(x-4))-e^(x)) (((x+1)(x+3))/((x+2)(x+4))-e^(-x)) (x^(3)-cos x)=0 :

At x=0,f(x)=(3-x)e^(2x)-4xe^(x)-x

At x=0,f(x)=(3-x)e^(2x)-4xe^(x)-x

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is